

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Number: BKKH18009479

Nov 27, 2018

Date:

Applicant: PLAN CREATIONS CO., LTD.

8 MOO 8, TRANG-PALIAN RD.,

YANTAKAO, TRANG, THAILAND 92140 ATTN: K.NARONG, K.SUPAPORN

Sample description:

Quantity of sample:One (1) setSample description:Wooden toyDate sample received:July 20, 2018

Date information received: November 09, 2018

Client Information:

One (1) set of submitted sample said to be CHICKEN PUZZLE

Item Name: CHICKEN PUZZLE

Item Number: 5673

Test conducted:

As requested by the applicant, for details please refer to attached page(s)

To be continued

For and on behalf of : Intertek Testing Services (Thailand) Ltd.,

Hardlines Laboratory

Ladtaka Wongwiboonporn

Laboratory Manager Hardlines Department

Page 1 of 19

The report shall not be reproduced without written approval from Intertek

Number: BKKH18009479

The results relate only to the item tested.

_			•	
$^{\prime\prime}$	nci	lusi	n	•
LU		usi	UII	

Tested samples	<u>Standard</u>	<u>Result</u>
Submitted sample	U.S. ASTM F963-17 for Physical and mechanical tests	Pass
	U.S. ASTM F963-17 for Flammability test of materials	Pass
	other than textile materials	
	U.S. ASTM F963-16 for Heavy elements Test	Pass
	Standard - U.S. CFR title 16	
	(CPSC regulations)	Pass
	Part 1303 total Lead content	
	<u>Standard</u>	
	U.S. Consumer product safety improvement	Pass
	Act 2008(H.R. 4040) Title I, Section 101	
	For total lead content in surface coating	
	U.S. Consumer product safety improvement	Pass
	Act 2008(H.R. 4040) Title I, Section 101	
	For total lead content in non-surface coating material (substrat	e)
	U.S. Consumer product safety improvement	Pass
	Act 2008(H.R. 4040) Title I, Section 108	
	Requirement on phthalates	
	Phthalate Content Requirement base	Pass
	on the California Proposition 65	
	Illinois Lead Poisoning Prevention	Pass

Remark:

As requested by the applicant, the test was conducted only on components listed in this report.

Act 410 ILCS 45 section 6 (public act 095-1019)

Other components were not tested.

Page 2 of 19

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Remark:

The chemical test results was not conducted on the below components of samples. Applicant claimed the components were tested on our previous test report.

Components	Report No.	<u>Date</u>
ASTM F963-16: Heavy metal		
ORANGE COATING ON WOOD	BKKH18001632	Feb 12, 2018
YELLOW COATING ON WOOD	BKKH18008771	Jul 12, 2018
BROWN COATING ON WOOD	BKKH18008771	Jul 12, 2018
LACQUER COATING ON WOOD	BKKH18008771	Jul 12, 2018
RED COATING ON WOOD	BKKH18008770	Jul 12, 2018
BROWN COATING ON SAWDUST	BKKH18013957	Oct 22, 2018
RED FRIEZE	BKKH18011517	Sep 04, 2018
YELLOW FABRIC	BKKH18011941	Sep 18, 2018
Lead in surface coating		
ORANGE COATING ON WOOD	BKKH18001632	Feb 12, 2018
YELLOW COATING ON WOOD	BKKH18008771	Jul 12, 2018
BROWN COATING ON WOOD	BKKH18008771	Jul 12, 2018
LACQUER COATING ON WOOD	BKKH18008771	Jul 12, 2018
RED COATING ON WOOD	BKKH18008770	Jul 12, 2018
BROWN COATING ON SAWDUST	BKKH18013957	Oct 22, 2018
<u>Lead in substrate</u>		
RED FRIEZE	BKKH18011517	Sep 04, 2018
YELLOW FABRIC	BKKH18011941	Sep 18, 2018
Phthalate content		
ORANGE COATING ON WOOD	BKKH18001632	Feb 12, 2018
YELLOW COATING ON WOOD	BKKH18008771	Jul 12, 2018
BROWN COATING ON WOOD	BKKH18008771	Jul 12, 2018
LACQUER COATING ON WOOD	BKKH18008771	Jul 12, 2018
RED COATING ON WOOD	BKKH18008770	Jul 12, 2018
BROWN COATING ON SAWDUST	BKKH18013957	Oct 22, 2018

Page 3 of 19

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

1 Physical And Mechanical Tests ¹

Test Standard: ASTM Standard Consumer Safety Specification for Toy Safety F963-17.

Age group for testing: For age over 12 months.

The submitted samples were undergone the use and abuse tests in accordance with the Federal

Hazardous Substances Act (FHSA), Title 16, Code of Federal Regulations: -

 Test
 FHSA
 Parameter

 Drop test
 Section 1500.51(b)
 10 x 4.5 ft

 Torque test
 Section 1500.53(e)
 4 in-lbf

 Tension test
 Section 1500.53(f)
 15 lbf

 Compression test
 Section 1500.53(g)
 30 lbf

<u>Clause</u>	<u>Testing items</u>	<u>Assessment</u>
4.1	Material quality	Р
4.5	Sound-producing toys	NA
4.6.1	Toys intended for children under 36 months (small objects)	Р
4.6.2	Mouth-actuated toys	NA
4.6.3	Toys and games for 36 months to 72 months (small part warning)	NA
4.7	Accessible edges	Р
4.8	Projections	NA
4.9	Accessible points	Р
4.10	Wires or rods	NA
4.11	Nails and fasteners	NA
4.12	Plastic film	NA
4.13	Folding mechanisms and hinges	NA
4.14	Cords, straps and elastics	NA
4.15	Stability and over-load requirements	NA
4.16	Confined spaces	NA
4.17	Wheels, tires and axles	NA
4.18	Holes, clearance, and accessibility of mechanisms	NA
4.19	Simulated protective devices	NA
4.20	Pacifiers	NA
4.21	Projectile toys	NA
4.22	Teethers and teething toys	NA

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

<u>Clause</u>	<u>Testing items</u>	<u>Assessment</u>
4.23	Rattles	NA
4.24	Squeeze toys	NA
4.25	Battery-operated toys	NA
4.26	Toys intended to be attached to a crib or playpen	NA
4.27	Stuffed and beanbag-type toys	NA
4.28	Stroller and carriage toys	NA
4.29	Art materials	NA
4.30	Toy gun marking	NA
4.31	Balloons	NA
4.32	Certain toys with nearly spherical ends	NA
4.33	Marbles	NA
4.34	Balls	NA
4.35	Pompoms	NA
4.36	Hemispheric-shaped objects	NA
4.37	Yoyo elastic tether toys	NA
4.38	Magnets	NA
4.39	Jaw entrapment in handles and steering wheels	NA
4.40	Expanding materials	NA
4.41	Toy chests	NA
5	Labelling requirement	P
6	Instructional literature	Р
7	Producer's markings	
	- name of producer (toy and package)	Yes
	- address (package)	Yes

Remark: P = Pass NA = Not applicable

▲ = Tested items are not included in the TISI Accreditation

The submitted samples were undergone the tests in accordance with clause 8.5 through clause 8.17 and 8.19 through 8.26 on normal use, abuse and specific tests for different types of toys whichever is applicable.

Testing period: July 20, 2018 to August 13, 2018

Flammability Test

Test Standard: Clause 4.2 of the ASTM Standard Consumer Safety Specification for Toy Safety F963-17.

Results: Did not ignite

▲ = Tested items are not included in the TISI Accreditation

Testing period: July 20, 2018 to August 13, 2018

Page 5 of 19

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

3 Heavy Elements Analysis

As per clause 4.3.5.1(2) of the ASTM Standard Consumer Safety Specification on Toy Safety F963-16, acid extraction method was used and heavy elements migration content were determined by ICP-OES analysis.

			<u>Result</u>			<u>LOD</u>	<u>LOQ</u>	Limit mg/kg
			mg/kg			mg/kg	mg/kg	
	(1)	(2)	(3)	(4)	(5)			
Sol. Barium (Ba)	216	<5	572	<5	604	1	5	1000
, ,	_	_	_	_		_	_	
Sol. Lead (Pb)	ND	<5	ND	ND	ND	1	5	90
Sol. Cadmium (Cd)	ND	ND	ND	ND	ND	1	5	75
Sol. Antimony (Sb)	ND	ND	ND	ND	ND	2	5	60
Sol. Selenium (Se)	ND	ND	ND	ND	ND	1	5	500
Sol. Chromium (Cr)	ND	ND	ND	ND	ND	2	5	60
Sol. Mercury (Hg)	ND	ND	ND	ND	ND	1	5	60
Sol. Arsenic (As)	ND	ND	ND	ND	ND	2	5	25

Remark: Sol. = Soluble

mg/kg = Milligram per kilogram based on weight of sample; = ppm = Parts per million

LOQ = Limit of Quantitation

ND = Not detected (Less than LOD) <= Less than

Tested components:

(1) =	ORANGE COATING ON WOOD	Refer	BKKH18001632
(2) =	YELLOW COATING ON WOOD	Refer	BKKH18008771
(3) =	BROWN COATING ON WOOD	Refer	BKKH18008771
(4) =	LACQUER COATING ON WOOD	Refer	BKKH18008771
(5) =	RED COATING ON WOOD	Refer	BKKH18008770

Note: The results of soluble toxic elements were adjusted by subtracting the analytical correction factor.

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

Heavy Elements Analysis

As per clause 4.3.5.1(2) of the ASTM Standard Consumer Safety Specification on Toy Safety F963-16, acid extraction method was used and heavy elements migration content were determined by ICP-OES analysis.

	<u>Result</u>	<u>LOD</u>	<u>LOQ</u>	Limit mg/kg
	mg/kg	mg/kg	mg/kg	
(6)				
<5		1	5	1000
ND		1	5	90
ND		1	5	75
ND		2	5	60
ND		1	5	500
ND		2	5	60
ND		1	5	60
ND		2	5	25
	<5 ND ND ND ND ND	mg/kg (6) <5 ND	mg/kg mg/kg mg/kg (6)	mg/kg mg/k

Remark: Sol. = Soluble

mg/kg = Milligram per kilogram based on weight of sample; = ppm = Parts per million LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD) <= Less than

Tested components:

(6) = BROWN COATING ON SAWDUST Refer BKKH18013957

Note: The results of soluble toxic elements were adjusted by subtracting the analytical correction factor.

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

Heavy Elements Analysis

As per clause 4.3.5.2(2)(b) of the ASTM Standard Consumer Safety Specification on Toy Safety F963-16, acid extraction method was used and heavy elements migration content were determined by ICP-OES analysis.

			<u>Result</u>	<u>LOD</u>	<u>LOQ</u>	Limit mg/kg
			mg/kg	mg/kg	mg/kg	
	(7)	(8)				
Sol. Barium (Ba)	ND	ND		1	5	1000
Sol. Lead (Pb)	ND	ND		1	5	90
Sol. Cadmium (Cd)	ND	ND		1	5	75
Sol. Antimony (Sb)	<5	ND		2	5	60
Sol. Selenium (Se)	ND	ND		1	5	500
Sol. Chromium (Cr)	ND	ND		2	5	60
Sol. Mercury (Hg)	ND	ND		1	5	60
Sol. Arsenic (As)	ND	ND		2	5	25

Remark: Sol. = Soluble

mg/kg = Milligram per kilogram based on weight of sample; = ppm = Parts per million
LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD) < = Less than

Tested components:

(7) =	RED FRIEZE	Refer	BKKH18011517
(8) =	YELLOW FABRIC	Refer	BKKH18011941

Note: The results of soluble toxic elements were adjusted by subtracting the analytical correction factor.

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

Total Lead (Pb) Content

As per clause 4.3.5.1(1) of the ASTM Standard Consumer Safety Specification on Toy Safety F963-16, test method CPSC-CH-E1003-09.1:2011 was used and total Lead content was determined by ICP-OES analysis.

(I) Surface coating

Tested Component	<u>Result</u>	LOD	<u>LOQ</u>	<u>Limit</u>
rested Component	mg/kg	(mg/kg)	(mg/kg)	<u>(mg/kg)</u>
(1)	ND	2	13	90
(2)	<13	2	13	90
(3)	ND	2	13	90
(4)	ND	2	13	90
(5)	ND	2	13	90
(6)	ND	2	13	90

Remark: mg/kg = Milligram per kilogram based on weight of sample; = ppm = Parts per million

LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD) <= Less than

Tested components:

(1) =	ORANGE COATING ON WOOD	Refer	BKKH18001632
(2) =	YELLOW COATING ON WOOD	Refer	BKKH18008771
(3) =	BROWN COATING ON WOOD	Refer	BKKH18008771
(4) =	LACQUER COATING ON WOOD	Refer	BKKH18008771
(5) =	RED COATING ON WOOD	Refer	BKKH18008770
(6) =	BROWN COATING ON SAWDUST	Refer	BKKH18013957

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

Total Lead (Pb) Content

As per clause 4.3.5.2(2)(a) of the ASTM Standard Consumer Safety Specification on Toy Safety F963-16, test method CPSC-CH-E1001-08.3:2012, CPSC-CH-E1002-08.3:2012 were used and total Lead content was determined by ICP-OES analysis.

(II) Non-surface coating

Tested Component	<u>Result</u>	<u>LOD LOQ</u>	<u>Limit</u>
	mg/kg	(mg/kg) (mg/kg)	<u>(mg/kg)</u>
(7)	ND	1 13	100
(8)	ND	1 13	100

Remark: mg/kg = Milligram per kilogram based on weight of sample; = ppm = Parts per million

LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD)

Tested components:

(7) = RED FRIEZE Refer BKKH18011517 (8) = YELLOW FABRIC Refer BKKH18011941

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

4 Total Lead (Pb) content ⁴

As per U.S. Code of Federal Regulations title 16 Part 1303. Acid digestion method was used and total Lead content was determined by Inductively Couple Plasma Optical Emission Spectrometry.

2

Tested component	Result %	LOD %	LOQ %	<u>Limit %</u>
(1)	ND	0.0002	0.0013	0.0090
(2)	<0.0013	0.0002	0.0013	0.0090
(3)	ND	0.0002	0.0013	0.0090
(4)	ND	0.0002	0.0013	0.0090
(5)	ND	0.0002	0.0013	0.0090
(6)	ND	0.0002	0.0013	0.0090

Remark: % = percentage < = Less than

LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD)

▲ = Tested items are not included in the TISI Accreditation

Tested components:

(1) =	ORANGE COATING ON WOOD	Refer	BKKH18001632
(2) =	YELLOW COATING ON WOOD	Refer	BKKH18008771
(3) =	BROWN COATING ON WOOD	Refer	BKKH18008771
(4) =	LACQUER COATING ON WOOD	Refer	BKKH18008771
(5) =	RED COATING ON WOOD	Refer	BKKH18008770
(6) =	BROWN COATING ON SAWDUST	Refer	BKKH18013957

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

5 Total lead (Pb) content in surface coating

As per U.S. Consumer Product Safety Improvement Act of 2008 (H.R. 4040), Title I, Section 101 for children's products containing Lead, CPSC-CH-E1003-09.1:2011 method was used and total Lead content was determined by Inductively Couple Plasma Optical Emission Spectrometry.

Tested component	<u>Result</u>	<u>LOD</u>	<u>LOQ</u>	<u>Limit mg/kg</u>
	mg/kg	mg/kg	mg/kg	
(1)	ND	2	13	90
(2)	<13	2	13	90
(3)	ND	2	13	90
(4)	ND	2	13	90
(5)	ND	2	13	90
(6)	ND	2	13	90

Remark: mg/kg = Milligram per kilogram based on weight of sample; = ppm = Parts per million

LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD) <= Less than

Tested components:

(1) =	ORANGE COATING ON WOOD	Refer	BKKH18001632
(2) =	YELLOW COATING ON WOOD	Refer	BKKH18008771
(3) =	BROWN COATING ON WOOD	Refer	BKKH18008771
(4) =	LACQUER COATING ON WOOD	Refer	BKKH18008771
(5) =	RED COATING ON WOOD	Refer	BKKH18008770
(6) =	BROWN COATING ON SAWDUST	Refer	BKKH18013957

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Number: BKKH18009479

Test conducted:

6 Total lead (Pb) content in substrate material- non-metal children's product As per U.S. Consumer product safety improvement Act of 2008 (H.R. 4040), Title I, Section 101 for children's products containing lead, CPSC-CH-E1002-08.3:2012 method was used and total lead content was determined by Inductively Couple Plasma Optical Emission Spectrometry. 2

	· - · · · · · · · · · · · · · · · · · ·	1 7		
Tested component	<u>Result</u>	<u>LOD</u>	<u>LOQ</u>	Limit mg/kg
	mg/kg	mg/kg	mg/kg	
(1)	ND	1	13	100
(2)	ND	1	13	100

mg/kg = Milligram per kilogram based on weight of sample; = ppm = Parts per million Remark:

> LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD)

Tested components:

(1) =	RED FRIEZE	Refer	BKKH18011517
(2) =	YELLOW FABRIC	Refer	BKKH18011941

www.intertek.com

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

7 Phthalate content

As per CPSC-CH-C1001-09.3:2010 and U.S. Consumer Product Safety Improvement Act 2008 (H.R. 4040), Title I, Section 108 requirement on Phthalates, solvent extraction method was used and Phthalate content was determined by Gas Chromatographic-Mass Spectrometric (GC-MS) analysis. 2

			<u>Result</u>			<u>LOD</u>	<u>LOQ</u>	<u>Limit</u>	<u>NPR</u>
			(%, w/w)			(%, w/w)	(%, w/w)	(%, w/w)	(%, w/w)
	(1)	(2)	(3)	(4)	(5)				
Dibutyl Phthalate (DBP)	ND	ND	ND	ND	ND	0.0015	0.0030	0.1	0.1
Di(2-ethylhexyl) phthalate (DEHP)	ND	ND	ND	ND	ND	0.0015	0.0030	0.1	0.1
Benzyl butyl Phthalate (BBP)	ND	ND	ND	ND	ND	0.0015	0.0030	0.1	0.1
Di-iso-nonyl Phthalate (DINP)	ND	ND	ND	ND	ND	0.0015	0.0090	0.1	0.1
Di-n-octyl Phthalate (DNOP)	ND	ND	ND	ND	ND	0.0015	0.0030	0.1	
Di-iso-decyl Phthalate (DIDP)	ND	ND	ND	ND	ND	0.0015	0.0090	0.1	
Di-isobutyl phthalate (DIBP) ▲	ND	ND	ND	ND	ND	0.0015	0.0030		0.1
Di-n-pentyl phthalate (DPENP) ▲	ND	ND	ND	ND	ND	0.0015	0.0030		0.1
Di-n-hexyl phthalate (DHEXP)▲	ND	ND	ND	ND	ND	0.0015	0.0030		0.1
Di-cyclohexyl phthalate (DCHP) ▲	ND	ND	ND	ND	ND	0.0015	0.0030		0.1
Diisooctyl phthalate (DIOP) ▲	ND	ND	ND	ND	ND	0.0015	0.0090		

Remark: The above limit was quoted according to US Consumer Product Safety Improvement Act 2008 for prohibition on sale of certain products containing specified phthalates.

The Phthalate no.7-11 are not included in US Consumer Product Safety Improvement Act 2008 and was conducted as per applicant requested only.

NPR = Notice of proposed rulemaking %, w/w = Percentage weight by weight

LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD)

▲ = Tested items are not included in the TISI Accreditation

Tested components:

(1) =	ORANGE COATING ON WOOD	Refer	BKKH18001632
(2) =	YELLOW COATING ON WOOD	Refer	BKKH18008771
(3) =	BROWN COATING ON WOOD	Refer	BKKH18008771
(4) =	LACQUER COATING ON WOOD	Refer	BKKH18008771
(5) =	RED COATING ON WOOD	Refer	BKKH18008770

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

Phthalate content

As per CPSC-CH-C1001-09.3:2010 and U.S. Consumer Product Safety Improvement Act 2008 (H.R. 4040), Title I, Section 108 requirement on Phthalates, solvent extraction method was used and Phthalate content was determined by Gas Chromatographic-Mass Spectrometric (GC-MS) analysis. 2

		<u>Result</u>	<u>LOD</u>	<u>LOQ</u>	<u>Limit</u>	<u>NPR</u>
		<u>(%, w/w)</u>	(%, w/w)	<u>(%, w/w)</u>	(%, w/w)	(%, w/w)
	(6)					
Dibutyl Phthalate (DBP)	ND		0.0015	0.0030	0.1	0.1
Di(2-ethylhexyl) phthalate (DEHP)	ND		0.0015	0.0030	0.1	0.1
Benzyl butyl Phthalate (BBP)	ND		0.0015	0.0030	0.1	0.1
Di-iso-nonyl Phthalate (DINP)	ND		0.0015	0.0090	0.1	0.1
Di-n-octyl Phthalate (DNOP)	ND		0.0015	0.0030	0.1	
Di-iso-decyl Phthalate (DIDP)	ND		0.0015	0.0090	0.1	
Di-isobutyl phthalate (DIBP) ▲	ND		0.0015	0.0030		0.1
Di-n-pentyl phthalate (DPENP) [▲]	ND		0.0015	0.0030		0.1
Di-n-hexyl phthalate (DHEXP) ▲	ND		0.0015	0.0030		0.1
Di-cyclohexyl phthalate (DCHP) ▲	ND		0.0015	0.0030		0.1
Diisooctyl phthalate (DIOP) ▲	ND		0.0015	0.0090		

Remark: The above limit was quoted according to US Consumer Product Safety Improvement Act 2008 for prohibition on sale of certain products containing specified phthalates.

> The Phthalate no.7-11 are not included in US Consumer Product Safety Improvement Act 2008 and was conducted as per applicant requested only.

NPR Notice of proposed rulemaking %, w/w Percentage weight by weight

LOD Limit of Detection LOQ = Limit of Quantitation

= Not detected (Less than LOD) ND

▲ = Tested items are not included in the TISI Accreditation

Tested components:

(6) =**BROWN COATING ON SAWDUST** Refer BKKH18013957

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

8 Phthalate content test 4

By solvent extraction and Gas Chromatographic-Mass Spectrometric (GC-MS) analysis.

			<u>Result</u>			<u>LOD</u>	LOQ	<u>Limit</u>
			(%, w/w)			(%, w/w)	(%, w/w)	(%, w/w)
	(1)	(2)	(3)	(4)	(5)			
Dibutyl Phthalate (DBP)	ND	ND	ND	ND	ND	0.0015	0.0030	0.1
Di(2-ethylhexyl) phthalate (DEHP)	ND	ND	ND	ND	ND	0.0015	0.0030	0.1
Benzyl butyl Phthalate (BBP)	ND	ND	ND	ND	ND	0.0015	0.0030	0.1
Di-iso-nonyl Phthalate (DINP)	ND	ND	ND	ND	ND	0.0015	0.0090	0.1
Dioctyl Phthalate (DNOP)	ND	ND	ND	ND	ND	0.0015	0.0030	0.1
Di-iso-decyl Phthalate (DIDP)	ND	ND	ND	ND	ND	0.0015	0.0090	0.1
Di-n-hexyl Phthalate (DnHP)	ND	ND	ND	ND	ND	0.0015	0.0030	0.1

Remark: %, w/w = Percentage weight by weight

LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD)

▲ = Tested items are not included in the TISI Accreditation

Note: The above limit was quoted according to the California Proposition 65

Tested components:

(1) =	ORANGE COATING ON WOOD	Refer	BKKH18001632
(2) =	YELLOW COATING ON WOOD	Refer	BKKH18008771
(3) =	BROWN COATING ON WOOD	Refer	BKKH18008771
(4) =	LACQUER COATING ON WOOD	Refer	BKKH18008771
(5) =	RED COATING ON WOOD	Refer	BKKH18008770

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

Phthalate content test[▲]

By solvent extraction and Gas Chromatographic-Mass Spectrometric (GC-MS) analysis.

		<u>Result</u>	<u>LOD</u>	<u>LOQ</u>	<u>Limit</u>
		<u>(%, w/w)</u>	(%, w/w)	(%, w/w)	(%, w/w)
	(6)				
Dibutyl Phthalate (DBP)	ND		0.0015	0.0030	0.1
Di(2-ethylhexyl) phthalate (DEHP)	ND		0.0015	0.0030	0.1
Benzyl butyl Phthalate (BBP)	ND		0.0015	0.0030	0.1
Di-iso-nonyl Phthalate (DINP)	ND		0.0015	0.0090	0.1
Dioctyl Phthalate (DNOP)	ND		0.0015	0.0030	0.1
Di-iso-decyl Phthalate (DIDP)	ND		0.0015	0.0090	0.1
Di-n-hexyl Phthalate (DnHP)	ND		0.0015	0.0030	0.1

Remark: %, w/w = Percentage weight by weight

LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD)

▲ = Tested items are not included in the TISI Accreditation

Note: The above limit was quoted according to the California Proposition 65

Tested components:

(6) = BROWN COATING ON SAWDUST Refer BKKH18013957

The report shall not be reproduced without written approval from Intertek

The results relate only to the item tested.

Test conducted:

9 Total Lead (Pb) Content

As per Illinois Lead poisoning prevention act 410 ILCS 45 section 6 (public act 095-1019), acid digestion method was used and total Lead content was determined by Inductively Couple Plasma Optical Emission Spectrometry.

I Surface coating material

Tested component	<u>Result</u>	<u>LOD</u>	<u>LOQ</u>	<u>Limit</u>
	mg/kg	mg/kg	mg/kg	mg/kg
(1)	ND	2	13	90
(2)	<13	2	13	90
(3)	ND	2	13	90
(4)	ND	2	13	90
(5)	ND	2	13	90
(6)	ND	2	13	90

Remark: < = Less than

mg/kg = Milligram per kilogram based on weight of sample; = ppm = Parts per million

LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD)

Requirement:

= Tested items are not included in the TISI Accreditation
According to Illinois Lead poisoning prevention act 410 ILCS 45 section 6
(public act 095-019), appropriate warning statement is required when the
Lead content of the submitted sample is more than 40 ppm but less than 90
ppm for surface coatings and less than 100 ppm for substrates by total
weight or a lower standard for Lead content as may be established by federal
or state law or regulation.

Tested components:

(1)	=	ORANGE COATING ON WOOD	Refer	BKKH18001632
(2)	=	YELLOW COATING ON WOOD	Refer	BKKH18008771
(3)	=	BROWN COATING ON WOOD	Refer	BKKH18008771
(4)	=	LACQUER COATING ON WOOD	Refer	BKKH18008771
(5)	=	RED COATING ON WOOD	Refer	BKKH18008770
(6)	=	BROWN COATING ON SAWDUST	Refer	BKKH18013957

The report shall not be reproduced without written approval from Intertek

Test conducted:

П Non-surface coating material (substrate)

Tested component	<u>Result</u>	LOD LOQ	<u>Limit</u>
	mg/kg	mg/kg mg/kg	mg/kg
(7)	ND	1 13	100
(8)	ND	1 13	100

Remark: < = Less than

Milligram per kilogram based on weight of sample; = ppm = Parts per million

LOD = Limit of Detection LOQ = Limit of Quantitation

ND = Not detected (Less than LOD)

Requirement: According to Illinois Lead poisoning prevention act 410 ILCS 45 section 6

> (public act 095-019), appropriate warning statement is required when the Lead content of the submitted sample is more than 40 ppm but less than 90 ppm for surface coatings and less than 100 ppm for substrates by total weight or a lower standard for Lead content as may be established by federal

or state law or regulation.

Tested components:

RED FRIEZE Refer BKKH18011517 (7) (8) YELLOW FABRIC Refer BKKH18011941

LOD and LOQ value in this test report were effective since October, 2014 Note:

Except where explicitly agreed in writing, all work and services performed by Intertek is subject to our standard Terms and Conditions which can be obtained at our website: http://www.intertek.com/terms/. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. This report is made solely on the basis of your instructions and / or information and materials supplied by you and provide no warranty on the tested sample(s) be truly representative of the sample source. The report is not intended to be a recommendation for any particular course of action, you are responsible for acting as you see fit on the basis of the report results. Intertek is under no obligation to refer to or report upon any facts or circumstances which are outside the specific instructions received and accepts no responsibility to any parties whatsoever, following the issue of the report, for any matters arising outside the agreed scope of the works. This report does not discharge or release you from your legal obligations and duties to any other person. You are the only one authorized to permit copying or distribution of this report (and then only in its entirety). Any such third parties to whom this report may be circulated rely on the content of the report solely at their own risk. This report shall not be reproduced, except in full.

www.intertek.com